
The art Framework
Chris Green
Fermilab Scientific Software
Infrastructure Group
CHEP 2012
21 May, 2012

Outline

What is art? Why is art?

Architecture & key features.

Origins of art.

Collaborative development.

The Future.

Summary.

2 / 13

What and why is art?

What is art?

art is a generic C++-based modular analysis framework,
for use from generator-level or DAQ event building
through simulation, production and user analysis. art
grew out of the CMS framework and was developed to
satisfy the common requirements of intensity frontier
experiments (initially Mu2e, NOνA and LArSoft).

Why is art?

Most HEP experiments use a framework; art is a
framework that is being used by multiple experiments,
which has relieved them of the need to produce and
maintain their own.

3 / 13

What and why is art?

What is art?
art is a generic C++-based modular analysis framework,
for use from generator-level or DAQ event building
through simulation, production and user analysis. art
grew out of the CMS framework and was developed to
satisfy the common requirements of intensity frontier
experiments (initially Mu2e, NOνA and LArSoft).

Why is art?

Most HEP experiments use a framework; art is a
framework that is being used by multiple experiments,
which has relieved them of the need to produce and
maintain their own.

3 / 13

What and why is art?

What is art?
art is a generic C++-based modular analysis framework,
for use from generator-level or DAQ event building
through simulation, production and user analysis. art
grew out of the CMS framework and was developed to
satisfy the common requirements of intensity frontier
experiments (initially Mu2e, NOνA and LArSoft).

Why is art?

Most HEP experiments use a framework; art is a
framework that is being used by multiple experiments,
which has relieved them of the need to produce and
maintain their own.

3 / 13

What and why is art?

What is art?
art is a generic C++-based modular analysis framework,
for use from generator-level or DAQ event building
through simulation, production and user analysis. art
grew out of the CMS framework and was developed to
satisfy the common requirements of intensity frontier
experiments (initially Mu2e, NOνA and LArSoft).

Why is art?
Most HEP experiments use a framework; art is a
framework that is being used by multiple experiments,
which has relieved them of the need to produce and
maintain their own.

3 / 13

Architecture

4 / 13

Architecture

#snip
source: {

module_type: RootInput
fileNames: ["file1.root",

"file2.root"]
}
physics.producers.trac1: {

module_type: TrackFinder
myPar: 5

}
physics.producers.trac2: {
module_type: TrackFinder
myPar: 10

}
#snip

5 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.

I/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.
Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.
Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.
I/O and work schedule are handled by a state machine.

Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.
Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.
Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.
I/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.

Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.
Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.
I/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.
Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.

products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.
Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.
I/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.
Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.

products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.
Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.
I/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.
Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.

Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Architecture
Experiments use art as an external package – their build
system is not tied to that used to develop art.
I/O and work schedule are handled by a state machine.
Modules are generally provided by users, and are divided
into inputs (sources), producers, filters,
analyzers and outputs.
Inter-module communication is handled principally by
means of persistent data structures (products) passed via
entities with known lifetimes: event, subrun, run.
products are distinguished from algorithms =⇒
modules don’t need to address persistency mechanics.
products retrieved from the data store are
non-modifiable: derived or edited data are saved as a new
product.
Configurable exception handling: categorization of a
failure is distinct from its handling action.

6 / 13

Key features

Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SQLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

7 / 13

Key features

Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SQLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

7 / 13

Key features

Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SQLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

7 / 13

Key features

Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SQLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

7 / 13

Key features

Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SQLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

7 / 13

Key features

Facility for products to refer to other products in
collections already saved (Ptr).

product mixing (“pile-up”): users need to know how to
combine the data from multiple instances of a particular
product, but not the mechanics of obtaining those data
and writing out the merged product.

Metadata may be stored in a relational SQLite database in
memory and / or embedded in a ROOT data file.

Simple configuration language with partitioned module
configuration information.

Bi-directional associations (Assns) between products
already in the data store.

An input source class template for more straightforward
user implementation of “raw” data input.

7 / 13

Origins of art
Over the last 15 years, the art authors have been involved in
writing multiple frameworks for HEP experiments: DØ, BTeV,
MiniBooNE, CMS. art grew out of the CMS framework
(forked in 2010).

Simplifications and tradeoffs:
Simpler data products (storage of only concrete types).
Removal of EventSetup.
Simplification of build system (moved to CMake).
Simplification of plugin system: rely on naming
conventions(_module.cc, _source.cc, etc.) rather than
build-generated runtime artifacts.
New, simple configuration language, FHiCL to match
stakeholder requirements replaces use of Python and
associated Python modules. FHiCL is used by other
projects such as LQCD and has Python and Ruby
bindings.

8 / 13

Origins of art
Over the last 15 years, the art authors have been involved in
writing multiple frameworks for HEP experiments: DØ, BTeV,
MiniBooNE, CMS. art grew out of the CMS framework
(forked in 2010).
Simplifications and tradeoffs:

Simpler data products (storage of only concrete types).

Removal of EventSetup.
Simplification of build system (moved to CMake).
Simplification of plugin system: rely on naming
conventions(_module.cc, _source.cc, etc.) rather than
build-generated runtime artifacts.
New, simple configuration language, FHiCL to match
stakeholder requirements replaces use of Python and
associated Python modules. FHiCL is used by other
projects such as LQCD and has Python and Ruby
bindings.

8 / 13

Origins of art
Over the last 15 years, the art authors have been involved in
writing multiple frameworks for HEP experiments: DØ, BTeV,
MiniBooNE, CMS. art grew out of the CMS framework
(forked in 2010).
Simplifications and tradeoffs:

Simpler data products (storage of only concrete types).
Removal of EventSetup.

Simplification of build system (moved to CMake).
Simplification of plugin system: rely on naming
conventions(_module.cc, _source.cc, etc.) rather than
build-generated runtime artifacts.
New, simple configuration language, FHiCL to match
stakeholder requirements replaces use of Python and
associated Python modules. FHiCL is used by other
projects such as LQCD and has Python and Ruby
bindings.

8 / 13

Origins of art
Over the last 15 years, the art authors have been involved in
writing multiple frameworks for HEP experiments: DØ, BTeV,
MiniBooNE, CMS. art grew out of the CMS framework
(forked in 2010).
Simplifications and tradeoffs:

Simpler data products (storage of only concrete types).
Removal of EventSetup.
Simplification of build system (moved to CMake).

Simplification of plugin system: rely on naming
conventions(_module.cc, _source.cc, etc.) rather than
build-generated runtime artifacts.
New, simple configuration language, FHiCL to match
stakeholder requirements replaces use of Python and
associated Python modules. FHiCL is used by other
projects such as LQCD and has Python and Ruby
bindings.

8 / 13

Origins of art
Over the last 15 years, the art authors have been involved in
writing multiple frameworks for HEP experiments: DØ, BTeV,
MiniBooNE, CMS. art grew out of the CMS framework
(forked in 2010).
Simplifications and tradeoffs:

Simpler data products (storage of only concrete types).
Removal of EventSetup.
Simplification of build system (moved to CMake).
Simplification of plugin system: rely on naming
conventions(_module.cc, _source.cc, etc.) rather than
build-generated runtime artifacts.

New, simple configuration language, FHiCL to match
stakeholder requirements replaces use of Python and
associated Python modules. FHiCL is used by other
projects such as LQCD and has Python and Ruby
bindings.

8 / 13

Origins of art
Over the last 15 years, the art authors have been involved in
writing multiple frameworks for HEP experiments: DØ, BTeV,
MiniBooNE, CMS. art grew out of the CMS framework
(forked in 2010).
Simplifications and tradeoffs:

Simpler data products (storage of only concrete types).
Removal of EventSetup.
Simplification of build system (moved to CMake).
Simplification of plugin system: rely on naming
conventions(_module.cc, _source.cc, etc.) rather than
build-generated runtime artifacts.
New, simple configuration language, FHiCL to match
stakeholder requirements replaces use of Python and
associated Python modules. FHiCL is used by other
projects such as LQCD and has Python and Ruby
bindings.

8 / 13

Collaborative development

art is developed by a small team, with weekly input and
priority setting from interested individuals on each
experiment.

Additional interaction via issue tracker on redmine1, email
lists2.
Binary package delivery system:

Experiments are not constrained to use a particular build
system to use art.
art can be developed as multiple packages but treated as
one due to automatic setup of dependencies.

Experiments develop their own modules, services,
auxiliary code and (optionally) main programs which
interact with art.

1https://redmine.fnal.gov/projects/art?jump=welcome
2art-users@fnal.gov, artists@fnal.gov

9 / 13

https://redmine.fnal.gov/projects/art?jump=welcome

Collaborative development

art is developed by a small team, with weekly input and
priority setting from interested individuals on each
experiment.

Additional interaction via issue tracker on redmine1, email
lists2.

Binary package delivery system:

Experiments are not constrained to use a particular build
system to use art.
art can be developed as multiple packages but treated as
one due to automatic setup of dependencies.

Experiments develop their own modules, services,
auxiliary code and (optionally) main programs which
interact with art.

1https://redmine.fnal.gov/projects/art?jump=welcome
2art-users@fnal.gov, artists@fnal.gov

9 / 13

https://redmine.fnal.gov/projects/art?jump=welcome

Collaborative development

art is developed by a small team, with weekly input and
priority setting from interested individuals on each
experiment.

Additional interaction via issue tracker on redmine1, email
lists2.
Binary package delivery system:

Experiments are not constrained to use a particular build
system to use art.
art can be developed as multiple packages but treated as
one due to automatic setup of dependencies.

Experiments develop their own modules, services,
auxiliary code and (optionally) main programs which
interact with art.

1https://redmine.fnal.gov/projects/art?jump=welcome
2art-users@fnal.gov, artists@fnal.gov

9 / 13

https://redmine.fnal.gov/projects/art?jump=welcome

Collaborative development

art is developed by a small team, with weekly input and
priority setting from interested individuals on each
experiment.

Additional interaction via issue tracker on redmine1, email
lists2.
Binary package delivery system:

Experiments are not constrained to use a particular build
system to use art.

art can be developed as multiple packages but treated as
one due to automatic setup of dependencies.

Experiments develop their own modules, services,
auxiliary code and (optionally) main programs which
interact with art.

1https://redmine.fnal.gov/projects/art?jump=welcome
2art-users@fnal.gov, artists@fnal.gov

9 / 13

https://redmine.fnal.gov/projects/art?jump=welcome

Collaborative development

art is developed by a small team, with weekly input and
priority setting from interested individuals on each
experiment.

Additional interaction via issue tracker on redmine1, email
lists2.
Binary package delivery system:

Experiments are not constrained to use a particular build
system to use art.
art can be developed as multiple packages but treated as
one due to automatic setup of dependencies.

Experiments develop their own modules, services,
auxiliary code and (optionally) main programs which
interact with art.

1https://redmine.fnal.gov/projects/art?jump=welcome
2art-users@fnal.gov, artists@fnal.gov

9 / 13

https://redmine.fnal.gov/projects/art?jump=welcome

Collaborative development

art is developed by a small team, with weekly input and
priority setting from interested individuals on each
experiment.

Additional interaction via issue tracker on redmine1, email
lists2.
Binary package delivery system:

Experiments are not constrained to use a particular build
system to use art.
art can be developed as multiple packages but treated as
one due to automatic setup of dependencies.

Experiments develop their own modules, services,
auxiliary code and (optionally) main programs which
interact with art.

1https://redmine.fnal.gov/projects/art?jump=welcome
2art-users@fnal.gov, artists@fnal.gov

9 / 13

https://redmine.fnal.gov/projects/art?jump=welcome

Future enhancements

Expand use of SQLite DB to all existing metadata.

Unify the concepts of event, subrun and run.

Revamp processing intervals.

Remove internal use of Reflex to be ready for ROOT/
Cling.

Move to ISO C++ 2011 (already used in development,
artdaq).

10 / 13

Future enhancements

Expand use of SQLite DB to all existing metadata.

Unify the concepts of event, subrun and run.

Revamp processing intervals.

Remove internal use of Reflex to be ready for ROOT/
Cling.

Move to ISO C++ 2011 (already used in development,
artdaq).

10 / 13

Future enhancements

Expand use of SQLite DB to all existing metadata.

Unify the concepts of event, subrun and run.

Revamp processing intervals.

Remove internal use of Reflex to be ready for ROOT/
Cling.

Move to ISO C++ 2011 (already used in development,
artdaq).

10 / 13

Future enhancements

Expand use of SQLite DB to all existing metadata.

Unify the concepts of event, subrun and run.

Revamp processing intervals.

Remove internal use of Reflex to be ready for ROOT/
Cling.

Move to ISO C++ 2011 (already used in development,
artdaq).

10 / 13

Future enhancements

Expand use of SQLite DB to all existing metadata.

Unify the concepts of event, subrun and run.

Revamp processing intervals.

Remove internal use of Reflex to be ready for ROOT/
Cling.

Move to ISO C++ 2011 (already used in development,
artdaq).

10 / 13

Coming attractions

Allow user-defined metadata in SQLite DB.

Event display toolkit (graphical toolkit agnostic):
better-defined / -suited interface to framework for
operators, algorithm developers.

Generalize and expand CMake-based build / package
delivery system for use by experiments as an alternative to
supporting their own build system.

11 / 13

Coming attractions

Allow user-defined metadata in SQLite DB.

Event display toolkit (graphical toolkit agnostic):
better-defined / -suited interface to framework for
operators, algorithm developers.

Generalize and expand CMake-based build / package
delivery system for use by experiments as an alternative to
supporting their own build system.

11 / 13

Coming attractions

Allow user-defined metadata in SQLite DB.

Event display toolkit (graphical toolkit agnostic):
better-defined / -suited interface to framework for
operators, algorithm developers.

Generalize and expand CMake-based build / package
delivery system for use by experiments as an alternative to
supporting their own build system.

11 / 13

Future directions

“Multi-schedule art”: process multiple events
simultaneously in the same executable; in addition,
allowing for algorithm parallelization within modules.

Currently prototyping DAQ event-building and triggering
using art (artdaq) in conjunction with MPI3 for DS50,
Mu2e, µBooNE, NOνA experiments.

Multi-thread and multi-process parallel I/O.

3Message Passing Interface http://www.mcs.anl.gov/mpi/
12 / 13

http://www.mcs.anl.gov/mpi/

Future directions

“Multi-schedule art”: process multiple events
simultaneously in the same executable; in addition,
allowing for algorithm parallelization within modules.

Currently prototyping DAQ event-building and triggering
using art (artdaq) in conjunction with MPI3 for DS50,
Mu2e, µBooNE, NOνA experiments.

Multi-thread and multi-process parallel I/O.

3Message Passing Interface http://www.mcs.anl.gov/mpi/
12 / 13

http://www.mcs.anl.gov/mpi/

Future directions

“Multi-schedule art”: process multiple events
simultaneously in the same executable; in addition,
allowing for algorithm parallelization within modules.

Currently prototyping DAQ event-building and triggering
using art (artdaq) in conjunction with MPI3 for DS50,
Mu2e, µBooNE, NOνA experiments.

Multi-thread and multi-process parallel I/O.

3Message Passing Interface http://www.mcs.anl.gov/mpi/
12 / 13

http://www.mcs.anl.gov/mpi/

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).

More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome

art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.

artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.

http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml

NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.

Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

Summary
art used currently by g-2, LArSoft (µBooNE, ArgoNeuT,
LBNE), Mu2e, NOνA since early 2011. Enquiries from
SuperB.

Supporting art mainstream development with <2 FTE.

Early, encouraging results for NOνA DDT using real
cosmic data from near detector (see NOνA DAQ poster).
More information:

https://redmine.fnal.gov/projects/art?jump=
welcome
art-users@fnal.gov, community list.
artists@fnal.gov, expert advice list.
http://mu2e.fnal.gov/public/hep/computing/
gettingstarted.shtml
NOνA Event Building, Buffering and Filtering From Within the
DAQ system poster at CHEP 2012.
Software for the Mu2e Experiment poster at CHEP 2012.

13 / 13

https://redmine.fnal.gov/projects/art?jump=welcome
https://redmine.fnal.gov/projects/art?jump=welcome
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml
http://mu2e.fnal.gov/public/hep/computing/gettingstarted.shtml

